首页> 外文OA文献 >Factorization Machines Leveraging Lightweight Linked Open Data-enabled Features for Top-N Recommendations
【2h】

Factorization Machines Leveraging Lightweight Linked Open Data-enabled Features for Top-N Recommendations

机译:分解机器利用轻量级链接开放数据启用   前N个建议的功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the popularity of Linked Open Data (LOD) and the associated rise infreely accessible knowledge that can be accessed via LOD, exploiting LOD forrecommender systems has been widely studied based on various approaches such asgraph-based or using different machine learning models with LOD-enabledfeatures. Many of the previous approaches require construction of an additionalgraph to run graph-based algorithms or to extract path-based features bycombining user- item interactions (e.g., likes, dislikes) and backgroundknowledge from LOD. In this paper, we investigate Factorization Machines (FMs)based on particularly lightweight LOD-enabled features which can be directlyobtained via a public SPARQL Endpoint without any additional effort toconstruct a graph. Firstly, we aim to study whether using FM with theselightweight LOD-enabled features can provide competitive performance comparedto a learning-to-rank approach leveraging LOD as well as other well-establishedapproaches such as kNN-item and BPRMF. Secondly, we are interested in findingout to what extent each set of LOD-enabled features contributes to therecommendation performance. Experimental evaluation on a standard dataset showsthat our proposed approach using FM with lightweight LOD-enabled featuresprovides the best performance compared to other approaches in terms of fiveevaluation metrics. In addition, the study of the recommendation performancebased on different sets of LOD-enabled features indicate that property-objectlists and PageRank scores of items are useful for improving the performance,and can provide the best performance through using them together for FM. Weobserve that subject-property lists of items does not contribute to therecommendation performance but rather decreases the performance.
机译:随着链接开放数据(LOD)的普及以及随之而来的可以通过LOD访问的不可访问知识的兴起,基于各种方法(例如基于图形的方法或使用具有LOD支持功能的不同机器学习模型),广泛研究了利用LOD推荐系统。许多以前的方法都需要构造一个附加图,以运行基于图的算法或通过组合用户项交互(例如,喜欢,不喜欢)和来自LOD的背景知识来提取基于路径的特征。在本文中,我们研究了基于特别轻量级启用LOD的功能的分解机(FM),这些功能可以通过公共SPARQL端点直接获得,而无需进行任何其他构造图的工作。首先,我们旨在研究将FM与这些轻量级的启用LOD的功能一起使用是否可以提供竞争性性能,而不是利用LOD以及其他公认的方法(例如kNN-item和BPRMF)的按等级学习方法。其次,我们有兴趣找出每组启用了LOD的功能在多大程度上有助于推荐性能。在标准数据集上进行的实验评估表明,与其他方法相比,我们提出的将FM与具有启用LOD的轻量级功能结合使用的方法,在五个评估指标方面提供了最佳性能。此外,基于不同的启用了LOD的功能集对推荐性能的研究表明,项目的属性对象列表和PageRank分数有助于提高性能,并且可以通过将它们一起用于FM来提供最佳性能。我们发现,项目的主题属性列表不会对推荐性能有所帮助,但是会降低性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号